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Highlights: 

 Cost and tool life of a hardened steel turning of are properly characterized as typical 

Poisson random variables. 

 Objective functions are simultaneously optimized coupled with their respective 

variances. 

 The proposed method reduces the dimension of the Multi-Objective Optimization 

problem. 

 Proposed Confidence ellipse for Pareto points supports a decision-making based on 

variability and mean shift. 

 A multivariate robust setup for steel turning process is obtained according to the Fuzzy 

decision-maker. 
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Abstract: This paper presents a multi-objective optimization algorithm that combines Normal 

Boundary Intersection method with response surface models of equimax rotated factor scores 

in order to simultaneously optimize multiples sets of means and variances of manufacturing 

processes characteristics. The algorithm uses equimax factor rotation to separate means and 

variances in individual and uncorrelated functions and afterwards combines them in a mean 

squared error function. These functions are then optimized using Normal Boundary 

Intersection method generating a Pareto frontier. The optimal solutions found are then filtered 

according to a 95% non-overlapping confidence ellipses for the predicted values of the 

responses and posteriorly they are assessed by a Fuzzy decision-maker index established 

between the volume of each confidence ellipsoid and the Mahalanobis distance between each 

Pareto point and its individual optima for a given weight. In order to illustrate the practical 

implementation of this approach, two cases involving the multi-objective optimization of the 

hardened steel turning process were considered: (a) the AISI 52100 hardened steel turning 

with CC6050 mixed ceramic inserts and (b) the AISI H13 hardened steel turning with CC 670 

mixed ceramic tools. For both cases, the best setup for cutting speed (V), feed rate (f) and 

depth of cut (d) were adjusted to find the minimal process cost (Kp) and the maximal tool life 

(T), both responses with minimal variance. The suitable results achieved in these case studies 

indicate that the proposal may be useful for similar manufacturing processes. 
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Keywords: Multi-objective Optimization, Normal Boundary Intersection, Factor Analysis, 
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Nomenclature  

fi(x) i-th objective function 

gi(x) ≤ 0 inequality constraint 

hi(x) = 0 equality constraint 

x, x
T
 =[x1, x2, …, xk] solution vector or design vector 

Ω solution space 

x
T
x ≤ ρ

2
 constraint representing the spherical region of a CCD design 

ρ radius of the spherical region 

k CCD design parameters or factors 

m, p number of objective functions or response (output) variables 

n number of experimental runs 

r number of coefficients in the regression models except β0 

X (n x r+1) design matrix derived from CCD with n rows and r+1 columns 

CCD Central Composite Design (Rotatable) 

Y, Y=[y1, y2, …, yp] matrix of response variables  

β, β
T
 = [β0, β1, …, βk] vector of coefficients of the regression models 

Φ Payoff matrix 

Φ  scaled (or normalized) form of Payoff matrix 

n  Quasi-normal vector 

F(x)  vector of scaled objective functions 

 xif  Individual scaled objective function 

U

if  Utopia value for fi(x) 

N

if  Nadir value for fi(x) 

MSE Mean Square Error 

Ti Target value for fi(x)  

 x2ˆ
i  estimated variance equation 

MMSE Multivariate Mean Square Error 

PCi(x) response surface model for the i-th principal component score 

ξPCi Target for principal component regression model 

λi, ei eigenvalue and eigenvector 

Z Standardized normal variable Z~N(0, 1) 

w, w
T
 = [w1, w2, …, wp] vector of weights for multiobjective optimization 

                  



4 

 

* 2MSEi i  mean square error of the i-th response surface  

iê  predicted standard deviation for the ith response 

          
2

ieR  proportion of explained variance of residuals 

Σ, R Variance-covariance and correlation matrices of order p x p 

ℓpm Factor loadings (weighted eigenvectors of Σ or R) 

1 1, , m me e  
 

L  Loading vector (p x p) 

11( ) diag( , , )ppCov   ε Ψ

 

Variance-covariance matrix of errors 

z0(x0) Positional vector relative to the solution space 

 323121

2

3

2

2

2

13211 xxxxxxxxxxxxT

0z  

   xiFAMSE  Mean square error function for rotated factor scores 

  xTi
FA

 Response surface model for the rotated factor score of mean 

 
 x

Ti

FA 2
 Response surface model for the rotated factor score of variance 

 Ti
FAT


 Target value for 

  xTi
FA

 

 UiFAMSE  Utopia value for    xiFAMSE  

 NiFAMSE  Nadir value for    xiFAMSE  

s number of selected fators (s ≤ p) 

Wnxn diagonal matrix of weights  

V Volume of a confidence ellipse 

Γ(.) Gamma function 

S Sample variance-covariance matrix (p x p) 

MD Mahalanobis distance 

T Tool life 

Kp Total cost of manufacturing process 

V Cutting Speed (m/min) 

f Feed rate (mm/rev) 

d Depth of cut (mm) 

μ
T
 Fuzzy decision maker 

NBI Normal Boundary Intersection 

OLS Ordinary Least Squares 

MWLS Multivariate Weighted Least Squares 

DOE Design of Experiments 

POE Propagation of Error 
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1. Introduction 

  For a large deal of manufacturing systems, the vital assignment in engineering is to 

ensure legitimately stable results, as many standardized products as possible. As an initial way 

to model these systems to be able to control it aiming at the optimal result, researchers have 

employed design of experiment (DOE) arrays to simultaneously optimize multiple quality 

characteristics adjusting the process parameters to their best levels. Examples of such 

approach can be seen in several manufacturing processes like resistance spot welding [1], 

pulsed gas metal arc welding [2], electro discharge machining [3], hardened steel turning [4-

6], free steel machining [7, 8], end milling [9] among others.  

On this wise, the quality of products will only be assured if expected values of the 

performance characteristics are near to their targets, with the least possible dispersion [10]. 

Eventual mean shifts and an excess of variance are typically occasioned by an inadequate 

setting of control variables or even by the presence of noise variables [11] and it is 

particularly observed in mass production lines [12]. In order to increase the product’s quality, 

researchers must minimize, simultaneously, the mean shift and the process variance, 

discovering the levels of the process control variables that provide an acceptable trade-off 

between both low variance and a deviation from a previously targeted mean [13]. If there is 

just one characteristic of interest and if the researcher considers different weights for mean 

and variance, the problem may be solved by any bi-objective optimization method [12]. 

Sometimes, it is convenient to use the MSE objective function as a way to agglutinate 

mean and variance around a specific target for the characteristic of interest [13]. Thusly, it 

becomes possible to synchronously optimize the process accuracy and precision, concurrently 

optimizing centrality and dispersion of a process performance variable subject to its 

respective constraints. 

Expanding this reasoning to multi-objective optimization, several works have been 

carried out considering the simultaneous optimization of several characteristics of processes 

and their respective variances treating these functions as individual objectives in a goal 

programming approach [14] or replacing the mean and variance functions directly by MSE 

indexes [15]. In both cases, the variances are computed from pure replicates [16], residuals 

from mean models [17], crossed arrays [8] or combined arrays [9]. The aforementioned 

schemes of computing variance have different costs and precision depending on the number 

of experiments required, and their use in practice depends on the researcher´s available budget 

[12].   

                  



6 

 

As a traditional multiobjective optimization method, Normal Boundary Intersection 

method (NBI) have been also successfully used to solve mean-variance optimization problems 

in the context of machining process like AISI 12L14 steel turning [8] or AISI 1045 end 

milling [9]. This method was specifically developed to generate a uniform spread of the 

Pareto frontier, even in a non-convex solution region [18]. The importance and flexibility 

inherent to this technique are featured in studies such as [19], in which its strength and 

suitability were extensively investigated according to the optimization of different and 

complex types of systems. Pareto frontier is a set of feasible, optimal and nondominated 

solutions that allows the decision maker to choose the best vector of parameters capable of 

providing a high level of quality for a specific process of interest [18]. When applied to MSE 

problems, Pareto frontier presents the feasible solutions found during the trade-off process 

between mean and variance objective functions. The complexity of problem increases as more 

objective functions are considered. In this way, for two characteristics there will be four 

objective functions – being two mean equations and two variance equations; if mean and 

variance are agglutinate as a MSE index, there will be just two dimensions to the 

multiobjective problems. Therefore, depending on the scheme adopted to treat the dual mean-

variance, larger will be the number of sub-problems involved in the optimization routine [19]. 

Correlation is also an important aspect to be considered in multiobjective optimization 

[20] since its negligence may compromises the final results: for example, when two positively 

correlated objective functions with different sense of optimization are simultaneously 

optimized the antagonist weights used in a convex combination will change the original 

correlation signal, creating a set of unrealistic solutions. Besides, since most of multiobjective 

optimization methods depends on the anchor points to promote normalization or scalarization, 

their definition based on individual optimization, neglecting the variance-covariance structure 

of the response data, will originate unrealistic optimization results.  The influence of 

correlation over the optimization results has been faced with several different approaches, as 

follows: (a) those methods based on the computation and modelling of the correlation of each 

experiment like as in [21], (b) those considering the variance-covariance matrix of response 

data to compose a multivariate distance between the vector of expected values and their 

respective targets [22], (c) those using directly Principal Component Analysis (PCA) to 

develop latent variables capable of replace the original correlated responses [20] or to create 

multivariate mean square error indexes [23] and (d), those methods using rotated factor scores 

(FA) to create uncorrelated objective functions or even relative indexes [24]. It is 

straightforward that approaches considering the computation of correlation or the covariance 
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of each designed experiment will require much more replicates than those represented by 

multivariate techniques and therefore they will be sometimes prohibitive.   

Factor Analysis (FA) is a very promising technique capable to treat the correlation 

influence over optimization schemes [25]. FA is a multivariate statistical technique similar to 

Principal Component Analysis (PCA) that is capable of form groups of similar variables 

based on their own correlations. However, while in PCA the latent variables are defined as 

linear combinations of original variables, in FA the original variables are written as linear 

combination of factors. The technique is started extracting the eigenvalues and eigenvectors 

of a variance-covariance or of the correlation matrix and using them as weights to form well-

representative scores. These scores are useful to create new uncorrelated objective functions 

[24] that may be used in any optimization scheme. Since these new dataset keeps a large 

correlation with the original data, the multivariate objective functions derived from the 

method will accurately reproduce the behavior of the original system but with uncorrelated 

functions [26]. Similar to the idea of multivariate mean square error [23], rotated factor scores 

may also be used to represent means and variance functions in order to compose MSE indexes 

which, in turn, may be minimized. This approach is capable of improve the mean and 

minimize the variance of several characteristics simultaneously [26].  

The correlation between response variables is also related to the independence of 

Pareto-optimal solutions. From statistical perspective, a Pareto point is a priori a vector of 

means that may associated to a variance-covariance matrix when the correlation among the 

variables is significative. Therefore, when objective functions are correlated, a multivariate 

confidence region is formed around the optimal solutions. Obviously, these elements will be 

present in all Pareto-points. Hence, depending on the amount of variability associated to each 

point, it may occur a considerable number of overlapping confidence ellipses revealing 

solutions that are not statistically different in true. In this way, all those solutions falling 

inside the confidence ellipse will be similar or redundant, and will not represent non-

dominating alternatives. Otherwise, solutions falling outside the ellipse may will be safely 

classified as non-dominated ones. In this sense, it is possible to filter the initial Pareto frontier 

considering the non-overlapping confidence ellipses available. 

This filtered set of feasible solutions may will be assessed and classified according to 

a multi-attribute decision making criteria in order to select the most suitable choice. In this 

paper, such criteria will be the volume of each confidence ellipsoid – which represents the 

amount of variability for the original responses in each Pareto-optimal solution - and the 

Mahalanobis distance between each Pareto point and its individual optima for a given weight. 

A trade-off between these criteria may be carried out using a Fuzzy decision-maker index [5]. 
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This is the second argument raised in this paper to help the decision maker to choose the best 

alternatives available. 

This work is based on two complementary arguments: (a) the establishment of a MSE 

index for rotated factor scores and (b) the definition of exclusive Pareto-optimal solutions 

according to the multivariate uncertainty associated to each Pareto Point. The feasibility and 

extension of this proposal will be tested with two real hardened steel turning process 

represented by the simultaneous minimization of cost per manufactured piece (Kp), the 

maximization of tool life (T) and the minimization of their respective variances: the first case 

exploring the machining of the AISI 52100 hardened steel [4] and the second one, assessing 

the machining of AISI H13 hardened steel [27]. In both cases, work pieces with hardness 

around 55 HRC were machined according to a central composite design for three factors: 

cutting speed (Vc), feed rate (f) and depth of cut (d).  

2. Theoretical background  

This section presents the theoretical fundamentals associated with the development of 

the proposed algorithm and highlights some insights about the integrated use of 

multiobjective optimization methods, Design of Experiments (DOE) and multivariate 

statistical analysis. 

2.1. Normal boundary intersection  

The NBI method was developed to address the deficiencies attributed to the weighted 

sums method, such as its difficult to generate a uniform spread of Pareto optimal solutions, 

even when a uniform spread of weight vectors is adopted. If the Pareto set is non-convex, it 

will imply in a loss of Pareto points on the concave part of the trade-off surface, besides to 

generate a non-uniformity among the Pareto points along the frontier. Eq. (1) express the 

original formulation of NBI proposed by [18], as follows: 

 

 

 

 





















0   

0         

         

ˆ :..

,

x

x

Ωx

xFnβΦ

x

j

j

t

h      

g

t tS

  tMax

 (1) 

Where Φ denotes a p x p payoff matrix shown in Eq. (2), where p is the number of 

multiple objective functions and Φ  represents its scaled (or normalized) form. β is a vector of 

weights and t is a scalar that is perpendicular to this utopia line. The vector n  is a quasi-
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normal vector and F(x) is the vector of scaled objective functions considered in the MOP, x 

denotes the solution vector and Ω represents the solution space; gj(x) and hj(x) represents 

respectively the j-th inequality and equality constraint.  

* * * *

1 1 1 1

* * * *

1

* * * *

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i m

i i i i m

m i m i m m

f x f x f x

f x f x f x

f x f x f x

 
 
 
 
 
 
 
 

Φ  (2) 

 

The elements *( )i if x  are calculated by replacing each individual optimum *

ix  obtained 

in all objective functions ( )if x , whereas 
* *( )i if x  corresponds to *

ix  solution that minimizes the 

i
th

 objective function. Usually, since objective functions may be represented by different 

scales or units, they are previously normalized to perform the MOP, producing the scaled 

version of the pay-off matrix Φ . 

The natural choice for the normalization of objective functions uses the Utopia point, 

fi
U
(x*), and the Nadir point, fi

N
(x*), defined as: 

 

 
 

pi
ff

ff
f

U

i

N

i

U

ii
i

,,2,1, 













x
x  

(3) 

 

 NBI could be interpreted as a perpendicular line to the utopia line in a point that is so 

distant from it. For a generic point (x0, y0, z0), the normal line may be described by 

   0 0 0 0 0 0x y z t f x y z  
T T

r following. Admitting the distance between any 

point in CHIM and another point on the Pareto frontier is represented by t (
0 maxP P ), so for any 

point along the CHIM represented by the vector or weights, when t is a maximum, the 

boundary will be orthogonally intercepted by the normal line. 

For bi-objective problems, the NBI formulation becomes: 

 

   

 

10 

0       

012 :.. 21

1









i

j

i

      

g

f f tS

f  Min





x

xx

x
Ωx

 

(4) 

 This will be the formulation used in the proposed algorithm. 
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2.2.MSE objective functions 

As proposed by [10] MSE agglutinates the squared distance between the expected 

value of a response surface, E[f(x)] and its target, T, with the variance of f(x), Var[f(x)]. This 

convex combination, originally developed without weights, is capable of represent the 

problem called “Dual response surface” (DRS) and when it is minimized improves the 

process performance, since finds the optimum x* that centers the process inside the tolerance 

simultaneously reducing its variability. MSEi may be written for the i-th response of interest 

as: 

 

    xx
22

ˆ
iiii TfMSE   (5) 

  

In Eq. (5), x represents the vector of process parameters, f(x) is an objective function 

written as a response surface model,  x2ˆ
i  represents the variance equation for the i-th 

characteristic of interest and T is a target value for f(x). Although the expression MSE may 

assume several other meanings in statistics and engineering, hereinafter this operator will be 

referred as described in Eq. (5).  

2.3. NBI-MMSE Method 

Focusing on multiobjective optimization of correlated responses, Bratchell [20] was 

the first researcher to propose the replacement of original objective functions by response 

surface models of principal component scores. Using the first principal component, this 

author showed that is possible to overcome the pitfalls generated by the presence of correlated 

structures in DOE problems, decomposing them in uncorrelated variables. However, [20] 

emphasized that PCA is not always enough in problems where the set of multiple responses is 

not well represented by the first PC-score only. The more responses are considered; the more 

principal components are required. These components will be linked to subgroups of response 

variables, however, these latent variables become sparse with low capacity to explain the total 

variability [4]. This barrier has been partially overcome by [4], considering the response 

surface of the first principal component as an objective function and the following 

components as constraints. 

In general, the directly use of PCA as a multiobjective optimization strategy has as its 

main drawback the incapacity to solve problems in which there is a negative relationship 

between the sense of optimization of PC-scores and the sense of optimization of the original 

responses. In order to surpass this new obstacle, [23] proposed the concept of “Multivariate 
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Mean Square Error” (MMSE). In this method, all principal components with eigenvalue 

larger than the unity are transformed in quadratic distances between the principal component 

score model and a desirable target and as such, each quadratic distance must be minimized. In 

this case, the variance was represented by the eigenvalue associated to the respective principal 

component. This metric was known as MMSEi and showed to be suitable to treat the 

problems with divergent optimization directions; however, the index was not capable to 

overcome the problem of insufficiency of explanation. Therefore, in order to increase the 

amount of explained variability, a geometric mean of the most representative MMSEi was 

suggested as an optimization objective function [23]. MMSE can be established as a 

multivariate dual response surface, such as: 

    

2

1

1

2

1

1

)(:.

;11



















































xxx
T

x

gSt

pkPCMMSEMMSEMin
kk

i

iiPCi

kk

i

iiT i

 

(

(6) 

  Where:     qjpiYZYZ
ppi Yp

p

i

q

j

ijYp

T

iPC ,...,2,1;,...,2,1;
1 1













 
 

   

Where k is the number of MMSE functions selected according to the significant 

principal components, PCi is the fitted second-order polynomial for a principal component 

score, 
iPC  is the target value of the i

th
 principal component that must keep a direct relation 

with the targets established for the original dataset, g(x) is the experimental region constraint; 

i  represents the eigenvector set associated with the i
th

 principal component, and pY  

represents the target associated to the p
th

 original response.     

Taking advantage of this idea, Gaudencio et al. [5] proposed to separate the multiple 

responses of interest in distinct groups defined according to a cluster algorithm, applying PCA 

to each one of these groups. Retaining only the principal components whose eigenvalues were 

larger than the unity, a MMSEi index was associated to each cluster formed. If more than one 

principal component was required, a geometric operator like described in Eq (6) was adopted. 

Afterward, each MMSEi index would be considered as a new objective functions that could 

be optimized according to the routine and parameters of the NBI method. For bidimensional 

cases, considering the Utopia and Nadir values of each MMSEi as fi(x) = MMSEi(x), fi
U
 = 

MMSEi
U
(x) and fi

N
 = MMSEi

N
(x), a scalarization is developed, leading to the following 

optimization system: 
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xxx
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(

(7) 

This formulation became known as NBI-MMSE method [5] and represented an 

evolution in the use of PC-scores as uncorrelated objective functions. When previously using 

cluster analysis as a manner of decouple the variables of the original data set, [5] in true 

emulated the concept of “Factor Analysis” that will be described in next sections and, 

although it seems to be a very similar approach, the method does not have the advantage to 

“rotate” the data to obtain must suitable groups. Furthermore, through factor analysis, the 

“grouping” and “rotation” tasks can be performed in a single step, avoiding misleading 

interpretations. Another advantage in using FA with rotation is possibility to standardize the 

senses of optimization between an original objective function and a multivariate one. These 

the main reasons why NBI-RFMSE method is being proposed and tested in this paper.   

2.4. Objective function modelling 

 In this paper, all the objective functions Yi considered will be estimated using response 

surface designs and will originate the following generic models: 

  ikllk

p

k

p

kl

iklj

p

j

ijjj

p

j

ijii xxxxy   
  1

2

11

0x  (8) 

 The coefficients presented in Eq. (8) are obtained using the Ordinary Least Squares 

(OLS) algorithm, which is based on a design matrix X(n x r+1) for n experimental runs used to 

estimate the r+1 coefficients in a model (including β0) and on a vector of response Yn, leading 

to a vector of coefficients βr+1x1, such as: 

   nnrrnrr YXXXβ
T1T





  11111  (9) 

 OLS is also useful to model variance regression equations. According to Plante [17], 

when unknown source of variation is present in a process, a considerable part of this 

information may be hidden in the residuals εikl of the mean equation. The variance equation 

may be found writing a response surface model for absolute value of the residuals εikl of the 
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mean model. Therefore, the variance equation of the i
th

 performance characteristic may be 

expressed as: 

   
22 2 *ˆ( ) ( ) 1 MSE

ii i e iVar y x x ê R     (10) 

Where:
* 2MSEi i  is the mean square error resulting from the response surface 

estimated for the i
th

 performance characteristic in Eq. (8); iê  is equal to predicted standard 

deviation for the i
th

 performance characteristic, computed using the absolute values of the 

residuals of mean. Such models present a proportion of explained variance given by 2

ieR . 

2.5. Factor Analysis 

 Factor Analysis (FA) is a multivariate statistical technique capable of form groups of 

variables based on their correlations [25]. In this statistical procedure, the difference between 

the random dependent variables (xp) and their respective mean (μp) is expressed as a linear 

combination of common factors Fm (unobserved random latent variables), their respective 

coefficients ℓpm (called loadings) and specific factor εp (called error).  

The factors Fm are centered, uncorrelated and standardized, also F  and ε  are 

independent, with null expected value and unitary variance. Besides, the covariance between 

any two factors Fm and Fk, m≠k, are null. This implies that factors are also uncorrelated 

variables. It is also assumed that ( ) 0pE   , ( )p pVar   , ( , ) 0p kCov    , p k , 

( , ) 0p mCov F   for all p and m. Since 
11( ) diag( , , )ppCov   ε Ψ , it is straightforward 

that covariance structure for the orthogonal factor model may be written as 

( )Cov  '
Σ x LL +Ψ , with ( , )Cov x F L like demonstrated in [25]. 

The specific purpose of FA is therefore to identify the loadings (or coefficients) that 

allows to write each variable xp as a linear combination of factors Fm, with possible errors 

represented in Ψ. Frequently, a clear interpretation of the extracted factors can be improved 

by rotating them, which promotes the most disjoint groups possible, each being associated to 

one specific factor [25]. Among the main orthogonal rotation methods are Quartimax, 

Orthomax, Varimax and Equimax [25].  

 Factor Analysis (FA) allows the storage of the most of information contained in the 

original variables of a group into a new latent variable called “Factor Score”. This new 

variable may be found using the transformation  Fa pZ Y      
T -1

L(L L) , where the loading 

vector is equals to 
1 1, , m me e  

 
L , with ei and λi  representing the eigenvectors and 
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eigenvalues of the variance-covariance (Ʃ) or correlation (R)  matrices of yp with Z(yp) being 

its standardized value [23]. 

 In this paper, factor scores will be used to replace the original responses variables Yp 

creating a new set of independent objective functions. Depending on the correlation structure, 

it is also possible to reduce the dimension of data, since one factor may adequately represent 

more than one original variable. Such compression depends on the results observed during the 

eigenanalysis. 

2.6. Confidence ellipses for predicted values 

As shown in [25], the vector of expected values of multivariate regression models fi(x) 

at the point x0 is given by β
T
z0 (x0), where β is the matrix of coefficients of the regression 

models involved; z0 is a positional vector established according to the elements of the 

assumed regression models fi(x). Therefore, the 100(1-α) % confidence ellipsoid for the mean 

vector at a given point x0 may be written as:  

            

       
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            

  
 

  

T
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T T

0 0

β z x β z x Σ β z x β z x

z x X X z x

 (11) 

  

 In Eq. (11), X (n x r+1) represents the design matrix of multivariate regression models, m 

is the number of responses, n is the number of observations and r is equal to the number of 

coefficients except β0. Σ̂  is the variance-covariance matrix of the residuals of the adjusted 

models, and Fm,n-r-m(α) is the upper (100α)-th percentile of an F-distribution with m and n-r-m 

degrees of freedom. It is also worth noting that each ellipse is inclined according to an angle θ 

which represents the correlation observed in the data set [25]. 

In order to drawn a 100(1-α) % confidence ellipse it is suggested the following 

expression: 

 

      
1 1 11 12

,

12 222

0 cosˆ 
sin0

ii
i m n r m

e em
F

e en r m

 






 

                       

T T T

0 0 0z β z x X X z x  (12) 

The eigenvalues (λ1, λ2) and eigenvectors (e11, e12, e21, e22) used are extracted from the 

variance-covariance matrix of the residuals of the adjusted models ( ˆnΣ ) and the ellipse is 

parameterized according to the range 0 2   .  
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The models adequacy may be improved using a multivariate least squares algorithm 

(MWLS) like as described in Eq. (13), with a diagonal matrix of weights (Wnxn) defined as 

the inverse of squared Mahalanobis Distance (MD) established for the residuals of first OLS 

models, like shown by Eq. (14). 

           
 

   nnnnrrnnnnrMWLS r
YWXXWXβ T1T






 11

ˆ  (13) 

            1

1

1
ˆ





 pppp nMD eΣeT  (14) 

 

Where: MD represents in this case the Mahalanobis distance of the residuals; epx1 

represents the vector of the residuals for the p OLS models in the n-th run; ppΣ̂ denotes the 

variance-covariance matrix of the residuals of the p response surface models. 

The confidence ellipsoid for each predicted Pareto point will be properly found 

replacing Eq. (13) into Eq. (12), like will be detailed the following propositions. 

3. Development of proposed method  

 The multi-objective optimization algorithm developed for the analysis of hardened 

steel turning manufacturing process (NBI-RFMSE) is created according to some assumptions 

described in the theoretical background of Section 2 and they are detailed in the following 

propositions. 

3.1. Proposition 1 –  MSE of rotated factors scores 

 Suppose there are p correlated responses of interest from which may be derived a pair 

of mean and variance objective functions, both written in terms of a vector of control 

variables (x). Also consider that Factor Analysis (FA) may be applied to generate independent 

objective functions in terms of rotated factor scores. If means and variances may be replaced 

by response surface models of these scores and if they are posteriorly agglutinated into a MSE 

function [26], then it is possible to write that: 

      
 

 
 
  xxx

TFATi
iTii

FATFAFAMSE 2

2

 
  (15) 

   
( )FA

1 1

| |
i p p

p q
T

i i p Y ij ij p Y

i j

T e Z Y T e Z Y T


 
 

    
   

          

(16) 
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 In Eq. (15), MSE(FA)i represents the “means square error” of the i-th rotated factor 

score surface model, FAi(x). Eq. (16) shows how the target for the rotated factor score 

models, TFAi, can be obtained from the targets of the original variables.  

3.2. Proposition 2 –  Targets obtained by individual optimization 

The target values for the original objective functions, 
pYT , may be obtained by 

individual optimization or may be settled up  according to decision maker´s preference as also 

the targets for the rotated factor scores equations, 
( )1FAT


and 
( ) 2FAT


. It is only need to observe 

the sense of optimization that allows the compatibility between responses and factor scores 

models. For a minimization case, the value of TFAi may be defined as: 

 

 

 

 

gtS

FAMin

T
i

FAi














0 :.. 2xxx

x

T

Ωx
 (17) 

 

Where 42k  represents the radius of the spherical region of a CCD design for k input 

factors [4]. 

3.3. Proposition 3 –   Utopia and Nadir points defined as optimization of MSE(FA)i 

The individual optimization of Eq. (15) allows the definition of the Utopia and Nadir 

points that may be written as: 
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 (18) 

 

With these results, it is possible to normalize the MSE(FA)i functions for bi-objective 

optimization problems, such as: 

 

     

   
pssi

FAMSEFAMSE

FAMSEFAMSE
f

U

i

N

i

U

ii
i 




 ;,,2,1 

x
   (19) 

 

3.4. Proposition 4 –  NBI-RFMSE method 

                  



17 

 

 If the former propositions are attended, it is possible to write the formulation of NBI-

RFMSE method as: 
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(20) 

 

 

The Pareto frontier is then obtained running Eq. (20) iteratively for different weights. 

Since the objective functions involved are response surface models, the several optimal and 

feasible solutions will just be a vector of expected values for the Pareto-optimal and each 

solution will be associated to a multivariate confidence region. 

 

3.5. Proposition 5 - Confidence ellipses for Pareto points 

Suppose the existence of a confidence ellipsoid for each solution in a given Pareto 

frontier, considering the vector of expected mean values as its centroid and a variance-

covariance matrix written in terms of the estimated variance functions. This ellipsoid may be 

defined as: 

      
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(21) 

Where 
iMWLSβ̂ follows Eq. (13), Wnxn is a diagonal matrix of weights whose elements 

are defined as the inverse of squared Mahalanobis Distance (MD) established for the residuals 

of first OLS models, Eq. (14), and  323121

2

3

2

2

2

13211 xxxxxxxxxxxxT

0z for a full 

quadratic model with k=3 factors. 

The confidence ellipsoid is just a pictorial representation of multivariate hypothesis 

test for a vector of means. When two vectors of means are statistically equal, then there will 
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be an overlapping of their confidence ellipses. In this way, non-overlapping confidence 

ellipses will suggest the existence of statistically different Pareto points. 

3.4. Proposition 4 – Fuzzy Decision-Maker: Volume of Confidence Ellipse versus 

Mahalanobis Distance 

Both mean shift and variance are important during the optimization, however, 

depending on the weights imposed for a given Pareto solution, precision and accuracy will 

present different values along the frontier. Therefore, to choose the most appropriate solution 

according to the decision maker´s preference, it is necessary to evaluate the degree of 

importance of the elements used to discriminate Pareto solutions, i.e., the Mahalanobis 

distance (MD) and the ellipse volume (V). Adapting Mahalanobis Distance (MD) to measure 

the process mean vector “shift” it is possible to write:  
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(22) 

In Eq. (22), the parameter γ represents the covariance between f1(x) and f2(x), with 

(Spxp) representing their variance-covariance matrix. 

The amount of variability associated to each optimal mean vector of Pareto frontier may 

be evaluated using the volume of 100(1-α) % confidence ellipse associated to this mean 

vector. Like as presented in [25], the ellipse volume can be expressed as: 

   
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Where:   1

0

x ux u e du


    . 

In Eq. (23), the parameter p represents the number of dimensions (or variables) 

considered in the problem, n is the number of degrees of freedom of the error term, α is the 

significance level and Γ(.) represents the gamma function [25]. 

The discrimination between MD and V may be established using the concept of Fuzzy 

decision maker [28, 29], in which membership functions are built for the attributes according 

to the arbitrary degree of preference manifested by the decisor. To execute this step, it is 

necessary to parameterize Utopia and Nadir values for each function, calculating the 

memberships and ranking them according to Fuzzy logic scenario, in the range [0, 1].  
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In this context, it is desirable that functions have the smallest Mahalanobis distance, as 

well as the smallest confidence ellipse volume. The membership functions are expressed 

according to Eq. (24): 
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Fuzzy decision maker (μ
T
) is defined as the weighted sum of membership functions 

considered [5], assuming the form of Eq. (25), such as: 
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k

i i i i i i

n

w w    


      (25) 

 

Then, the better Pareto solution will be that with the highest Fuzzy decision maker (μ
T
) 

value. It is worth mentioning that in this paper, displacement of means will be consider more 

important than variances, with an arbitrated ratio about 85/15. 

4. Material and methods 

The propositions presented in the Section 3 allows the establishment of generic 

framework to address multiobjective optimization problems involving multiple dual response 

surfaces. Starting with an experimental design for multiples responses – a CCD in this case -, 

the models for the original responses must be estimated and their respective residuals, stored. 

Afterwards, squared residuals are taken to create the variance data. According to the literature 

[30], the presence of unknown “noise” variables or the selection of non-normal distributed 

responses (mainly Poisson or Binomial models) will generally be detected and quantified by 

the residuals of mean models. Hence, using Eq. (9) and (10), the mean and variance models of 

each response of interest are obtained. This is basically the Step 1 of the proposed framework. 
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Fig. 1 – Multiobjective robust optimization framework. 

 

After correlation analysis of the data, both mean and variance data are transformed into 

equimax rotated factor scores to originate the non-correlated models. Although, any rotation 

method could be employed in this case, “Equimax” will promote factor with similar 

associated eigenvalues. This task characterizes the Step 2. Further, the dimensionality of 

optimization problem is reduced by agglutinating Fa objective functions into MSE-FA 

functions (Step 3). Then, these functions are simultaneously optimized applying the NBI 

method, resulting in a complete Pareto frontier (Step 4). In sequence, a confidence ellipse is 

established for each point of Pareto frontier according to the respective mean vector and 

variance-covariance matrix obtained during the optimization. Finally, for each solution 

considered, volumes of confidence ellipses are calculated, as well as Mahalanobis Distance 

between mean and the respective target (Step 5). So, these two measures compound a Fuzzy 

decision maker (Step 6) which, in turns, allows the choice of the most appropriate parameters 

for the process, according to the declared researcher´s interest. Applying the concept of non-

overlapping confidence regions, the most suitable Pareto-optimal solution is found (Step 7). 

The Fig. 1 presents an overview of this sequence, named as NBI-RFMSE method. 

The seven steps suggested in Fig. 1 are following detailed. 

Step 1 - Modeling of Mean and Variance: Starting with DOE, it is generated a central 

composite response surface design considering process variables (factors) and their respective 

levels. After running the experimental design, the matrix of responses is obtained. Pearson 
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correlation analysis is performed to investigate the existence of dependence among the 

responses (experimental data). Subsequently, the regression models are obtained according]ng 

to OLS method. 

  Next, for each response of interest, the residuals of OLS models are stored. It is worth 

standing to emphasize that anomalous behavior on the residuals may be detected using 

graphical approaches and can indicate the presence of non-normal response variables. 

Processing these residuals with POE or Poisson regression the variance equations may be 

found. Besides the expected correlation among the original responses, heteroscedastic models 

will generally present a significative correlation between expected values and variances. 

Therefore, PCFA approach may be used to decouple the response variables into an 

uncorrelated dataset. 

Step 2 – Modeling of Factor Scores: FA is performed to propitiate independent 

functions and then to avoid correlated variables in the subsequent optimization. In the FA it is 

possible that data could be separated independently that is, effectively representing mean and 

variance for each process response. The Factor score of each response is modeled by OLS 

with the same RSM design.  

Step 3 - Agglutination of FA of Mean and Variance into a MSE metric:  The pairs 

of factor scores of mean and variance models for each process response are agglutinated into a 

single MSE objective function. Such approach reduces a four-dimensional problem (four FA 

models) to a two-dimensional one. 

Step 4 - NBI Optimization:  Start obtaining the individual optima for each MSE-FA 

function using the experimental region as constraint. Generalized Reduced Gradient (GRG) 

algorithm may be applied in this task. Then, after writing the payoff matrix, promote the 

scaling of MSE-FA functions; perform Normal Boundary Intersection method with MSE-FA 

functions obtained in the Step 3 according to Eq. (20).  

Step 5 – Calculation of Mahalanobis Distance, Confidence Ellipse and Volume:  

For each Pareto point, the variance-covariance matrix (S) is defined considering the variances 

estimated. The covariance may be estimated using the correlations observed among the 

original responses and the variances previously obtained, such as 

   2 2 ,ij i jf f i j           x x . In the sequence, find the values of Mahalanobis distance 

[Eq. (27)] and ellipse volume [Eq. (28)] for each Pareto solution. In the calculation, considers 

p equals to the number of original responses and n as the degree of freedom of error term 

observed in the ANOVA test for regression models. 
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Step 6 – Calculation of Fuzzy Decision Maker:  The solutions must be evaluated 

according two perspectives: accuracy and precision. Establish the Fuzzy decision maker (μ
T
) 

like as defined in Eq.(31) , considering two membership functions: Mahalanobis distance 

( Di ) and confidence ellipse volume ( V i ) as Eq. (25). Choose weights for these two 

memberships according to some prior preference. Ultimately, the highest Fuzzy indicator will 

point out the best Pareto frontier solution according to the precision and accuracy 

perspectives.  

Step 7 – Smart Pareto Filtering:  Draw ellipses according to Eq. (21) for all Pareto 

points and exclude those solutions whose confidence regions are overlapped.  

5. Numerical examples and results 

The proposed algorithm will be illustrated using two numerical examples derived from 

real and experimental data of manufacturing processes: (a) a follow-along case based on the 

data of hardened steel turning of AISI 52100 with CC6050 mixed ceramic [4] and a short case 

using the same manufacturing process but for a different work piece material (AISI H13 

hardened steel) and a different machining tool (CC 670 mixed ceramic insert) [27]. 

 

5.1. Multiobjective optimization of AISI 52100 hardened steel turning: a follow-along case. 

This item presents the multiobjective optimization of the AISI 52100 steel turning 

process proposed in [4]. This experiment used cylindrical work pieces in dimensions of ϕ49 x 

50mm; all of them were quenched and tempered to achieve a hardness between 53 and 55 

HRC, up to a depth of 3 mm below the tool surface. The machine tool used was a CNC lathe 

with power of 5,5 KW in the spindle motor, with conventional roller bearings. The mixed 

ceramic (Al2O3 + TiC) inserts used were coated with a very thin layer of titanium nitride 

(TiN) presenting a chamfer on the edges. Their ISO code was CNGA 120408 S01525 and 

they were made by Sandvik Coromant (Sandvik class CC6050). The tool holder (ISO code 

DCLNL 1616H12) presented negative geometry with entering angle of κr = 95°. Tool flank 

wear measurements (VBmax) were taken through an optical microscope and the tool breaking 

point was used as criteria for the end´s life. 

Under such conditions, a central composite design was defined according to the range 

of setups described in Table 1, resulting in a CCD with 18 runs like shown in Table 2.  
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Table 1 – CCD factors levels 

Parameter Symbol Unit Levels (coded) 

−1.633 −1 0 1 1.633 

Cutting speed V m/min 187.34 200 220 240 252.66 

Feed rate f mm/rev 0.0342 0.05 0.075 0.1 0.1158 

Depth of cut d mm 0.1025 0.15 0.225 0.3 0.3475 

 

In the original work [4], seven responses were considered: surface roughness, tool life, 

tool wear, cutting time, process costs and material removal rate.  

 

 
Fig. 2 - SIPOC of AISI 52100 hardened steel turning. 

 

The SIPOC (Source-Input-Process-Output-Client) of Fig. 2 summarizes the main 

characteristics of AISI 52100 hardened steel turning. For sake of illustration, a simpler bi-

objective problem involving only the Tool life (T) and process costs (Kp) was chosen. 

Starting with Step 1, it is defined a CCD for the parameters defined in Table 1. The 

characteristics of the CCD described in Table 2 are: 3 input factors, 1 replicate, 18 runs, 2 

blocks. Also, for full two-level factorial, 8 cube points, 2 center points in cube, 6 axial points, 

2 center points in axial and the distance of each axial point α = 1.633.  
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Table 2 – Cutting parameters and responses for the CCD 

Runs Block V f d T Kp σ
2
(T) σ

2
(Kp) 

1 1 200.00 0.0500 0.1500 16.75 7.70 1.000 1.059 

2 1 240.00 0.0500 0.1500 11.50 6.41 3.199 1.029 

3 1 200.00 0.1000 0.1500 9.85 3.85 1.531 1.198 

4 1 240.00 0.1000 0.1500 8.50 3.21 1.228 1.045 

5 1 200.00 0.0500 0.3000 11.50 3.85 1.228 1.038 

6 1 240.00 0.0500 0.3000 7.45 3.21 1.525 1.119 

7 1 200.00 0.1000 0.3000 8.20 1.92 3.214 1.025 

8 1 240.00 0.1000 0.3000 6.25 1.60 1.000 1.037 

9 1 220.00 0.0750 0.2250 8.60 3.11 2.344 1.672 

10 1 220.00 0.0750 0.2250 6.80 3.10 2.344 1.672 

11 2 187.34 0.0750 0.2250 10.10 3.65 1.880 1.063 

12 2 252.66 0.0750 0.2250 7.60 2.71 1.873 1.049 

13 2 220.00 0.0342 0.2250 17.50 6.82 5.783 1.033 

14 2 220.00 0.1158 0.2250 7.20 2.01 5.833 1.034 

15 2 220.00 0.0750 0.1025 12.00 6.82 1.001 1.238 

16 2 220.00 0.0750 0.3475 6.70 2.01 1.001 1.138 

17 2 220.00 0.0750 0.2250 7.20 3.09 2.344 1.672 

18 2 220.00 0.0750 0.2250 9.10 3.11 2.344 1.672 

Source: Adapted from Paiva et al. [4] – coauthor. 

 

In sequence, the correlation between the T and Kp is investigated. Proceeding with the 

Pearson´s correlation analysis, it is observed a positive and significative correlation between T 

and Kp around 0.776, with P-value equal 0.000. These responses are positively correlated and 

their sense of optimization is opposite; while is expected that tool life (T) must be maximized, 

process costs (Kp) must be minimized. In other words, these responses represent a natural 

case of conflict between the objectives, with different anchor points.  

Table 3 presents the full quadratic models for means, variances and rotated factor 

scores, with high values for R
2
adj in all models. Response surfaces for T and Kp are shown in 

Fig. 3. 
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Table 3 – Full quadratic models for each response (Coded units) 

Term T Kp σ
2
 Kp σ

2 
T FA1 μ(T) FA2 σ² (Kp) FA3 σ² (T) FA4 μ(Kp) 

Constant 7.925 10.622 0.514 0.852 0.659 -0.398 -1.015 -0.348 

V -1.251 -0.238 0.927 0.998 0.533 0.299 0.514 0.459 

f -2.341 -2.584 1.007 1.001 0.505 0.274 0.232 -0.485 

d -1.639 -2.861 0.859 0.999 0.156 0.203 0.231 -0.725 

V 
2
 0.265 -0.196 0.430 0.893 -0.162 0.083 0.520 0.055 

f 
2
 1.577 0.297 0.357 1.312 -0.631 0.011 0.874 0.092 

d 
2
 0.452 0.822 0.655 0.073 -0.111 0.445 -0.027 0.305 

V*f 0.750 -0.165 0.834 0.104 -0.437 0.559 -0.172 -0.222 

V*d 0.075 0.217 1.564 0.149 -0.136 0.994 -0.262 0.128 

f*d 0.675 0.545 0.680 0.247 -0.261 0.429 0.059 0.168 

R
2
adj. (%) 83.99 96.76 89.61 100.00 97.71 100.00 99.48 87.74 

 

 
(a) 

 
(b) 

Fig. 3 - RSM for T (a) and Kp (b). 

 

According to Step 2, FA is performed for T, Kp, σ
2
(T) and σ

2
(Kp). Extracting four 

factors using principal component analysis and Equimax rotation it is obtained the following 

PCFA analysis (Table 4).  The percent of variability explained by the common factors (or 

communality) is the same for each one of the four factors and equals to 1. The respective four 

factor scores are listed in Table 5. 
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Table 4  – Sorted Rotated Factor Loadings. 

Loadings 

Variable FA1 FA2 FA3 FA4 

μ(T) -0.899 -0.182 -0.133 0.375 

μ(Kp) -0.435 -0.187 -0.303 0.827 

σ
2
 (T) 0.137 0.362 0.880 -0.277 

σ
2
 (Kp) 0.178 0.909 0.336 -0.172 

Variance 1.0482 1.0246 0.9965 0.9306 

% Var 0.262 0.256 0.249 0.233 

 

Table 5 – CCD for Equimax Rotated Factor Scores of the original responses. 

Runs Block V f d FA1 FA2 FA3 FA4 

1 1 200.00 0.0500 0.1500 -2.1907 1.3354 -1.0133 0.9159 

2 1 240.00 0.0500 0.1500 0.4261 -1.2244 0.9260 2.3144 

3 1 200.00 0.1000 0.1500 -0.0684 -0.0737 -0.3431 -0.1157 

4 1 240.00 0.1000 0.1500 0.3823 -0.3488 0.8766 0.1529 

5 1 200.00 0.0500 0.3000 -0.7881 -1.1208 -0.1046 -0.9087 

6 1 240.00 0.0500 0.3000 0.8830 0.3442 0.7609 0.7856 

7 1 200.00 0.1000 0.3000 -0.1037 -0.7679 0.7705 -1.4992 

8 1 240.00 0.1000 0.3000 0.2240 2.8871 0.9738 -0.4681 

9 1 220.00 0.0750 0.2250 0.2635 -0.3681 -1.0948 -0.7565 

10 1 220.00 0.0750 0.2250 1.3110 -0.4480 -0.8906 0.3077 

11 2 187.34 0.0750 0.2250 -0.2140 -0.6963 -0.4002 -0.5819 

12 2 252.66 0.0750 0.2250 0.5054 0.3662 1.1498 0.1525 

13 2 220.00 0.0342 0.2250 -2.6098 -0.7255 0.8671 0.1919 

14 2 220.00 0.1158 0.2250 0.3705 0.0134 1.7713 -0.4508 

15 2 220.00 0.0750 0.1025 0.0817 0.4695 -1.3986 1.9008 

16 2 220.00 0.0750 0.3475 0.4694 1.1332 -0.7681 -0.9792 

17 2 220.00 0.0750 0.2250 1.0687 -0.4308 -0.9421 0.0461 

18 2 220.00 0.0750 0.2250 -0.0107 -0.3448 -1.1405 -1.0076 
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The loadings are weighted eigenvectors and represent the correlation between an 

original variable and a factor: hence, the greater the loading (in absolute values), the greater 

the correlation. Therefore, it is possible to verify that FA1 is the better representative of μ(T) 

with a negative correlation. This means that desiring the maximization of μ(T), FA1 must be 

minimized. Such individual minimization leads to the target value for FA1. Analogously, the 

minimization of μ(Kp) will be achieved when FA4 is minimized (positive 

correlations/loadings); the minimization of FA3 and FA2 will lead to minimization of σ
2
 (T) 

and σ
2
 (Kp), respectively. This is the common logic used when original objective functions are 

replaced by factor scores. 

When writing the MSE-FA index for the tool life, for example, we observe that both 

(FA1 - TFA1)
2
 and FA3 must be minimized which implies that MSE-FA may also be 

minimized. This will represent the minimization of both [μ(T) – Target(T)]
2
 and σ

2
 (T) in a 

multivariate perspective. The same behavior can be verified with the factors associated to Kp. 

Then, the use of sums as an agglutination operator is a suitable choice to compose MSE-FA 

index in this case. 

Following the procedure established in the Step 3, the targets for the MSE’s functions 

are calculated using the GRG algorithm with x
T
x≤ρ

2
 as a unique constraint. This constraint 

represents the spherical region of a CCD with axial distance (ρ) equals to 1.633 for a design 

with k = 3 control factors (and 2 blocks). This procedure results in targets for FA1 and FA4 

respectively equal to  
( )1FAT


= -2.096 and 
( ) 4FAT


= -1.407.  

 

Table 6 – Payoff matrix of MSE´s, original objective functions and rotated factor scores. 

 Min Min Min Min Max Min Min Min Min Min 

 
MSE1 

(T) 

MSE2 

(Kp) 

µ 

(Kp) 

σ² 

(Kp) 

µ 

(T) 

σ² 

(T) 

FA4 

μ(Kp) 

FA2 

σ
2

(Kp) 

FA3 

σ
2

(T) 

FA1 

μ(T) 

MSE1 -1.292 6.971 17.417 2.132 15.262 0.039 0.969 1.323 -1.420 -1.607 

MSE2 5.004 -1.290 7.615 0.000 7.832 3.105 -1.305 -1.300 0.414 0.177 

µ (Kp) 4.557 1.946 6.328 5.880 7.391 6.528 -0.912 1.700 1.326 -0.168 

σ² (Kp) 2.480 1.362 12.720 0.000 10.460 0.314 -0.061 -0.450 -1.099 -0.074 

µ (T) 0.203 5.496 17.440 0.813 17.505 1.605 0.893 0.203 0.031 -2.380 

σ² (T) 0.863 2.748 14.292 0.381 11.921 0.000 0.259 -0.029 -1.284 -0.500 

FA4 4.552 -1.139 7.669 0.000 7.789 2.401 -1.407 -1.140 -0.092 0.190 

FA2 7.222 7.239 14.221 0.000 10.361 3.309 1.460 -1.150 1.305 0.467 

FA3 -1.171 7.111 17.466 2.138 15.204 0.000 0.996 1.334 -1.444 -1.573 
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FA1 -0.547 7.835 18.433 1.338 17.086 0.813 1.259 0.725 -0.564 -2.096 

Values in bold indicate the optimal result for individual optimization of respective function. 

 

Continuing the procedure, in the Step 4, MSE(FA)1 (referring to T) and MSE(FA)2 

(referring to Kp) are considered. Their individual optimization leads to the anchor points 

(utopia and nadir) for MSE(FA)1 equals to [-1.292, 5.004] and [6.971, -1.290] for MSE(FA)2.  

These values are used to generate the scaled functions that composes the NBI-FA. All the 

individual optima are listed in Table 7. 

In order to complete the procedure of Step 4, the multi-objective non-linear 

optimization algorithm of Eq. (20) is iteratively performed using GRG for different weights, 

forming the Pareto frontier for MSE(FA)1 and MSE(FA)2 (relative to Kp) depictured in Fig. 

4. Simultaneously, while NBI-FA method is running for MSE(FA)1 and MSE(FA)2, the value 

of several others full quadratic models under analysis may be observed and stored. A 

summary of these metrics is shown in Table 7 and Table 8.  

 

Table 7 - Results of Pareto frontier for MSE(FA)1 (T) and MSE(FA)2 (Kp). 

w1 
MSE1  

(T) 

MSE2  

(Kp) 

 
V f d  µ(Kp) σ²(Kp) µ(T) σ²(T) 

0.00 4.47 -0.96  -1.50 0.64 0.08  8.94 0.0000000 8.72 2.5157 

0.05 3.92 -0.87  -1.55 0.51 0.05  9.26 0.0000000 9.05 2.2697 

0.10 3.35 -0.79  -1.59 0.38 0.04  9.53 0.0000004 9.40 2.0644 

0.15 2.77 -0.73  -1.61 0.25 0.05  9.79 0.0000003 9.78 1.8921 

0.20 2.19 -0.68  -1.63 0.10 0.07  10.03 0.0000000 10.20 1.7478 

0.25 1.60 -0.63  -1.63 -0.05 0.10  10.30 0.0000000 10.69 1.6288 

0.30 1.02 -0.58  -1.61 -0.23 0.13  10.60 0.0000000 11.27 1.5358 

0.35 0.45 -0.51  -1.56 -0.44 0.18  11.00 0.0000001 12.01 1.4768 

0.40 -0.07 -0.39  -1.44 -0.74 0.23  11.66 0.0000000 13.15 1.4931 

0.45 -0.32 0.06  -1.38 -0.86 0.10  12.47 0.2664575 14.01 1.4728 

0.50 -0.48 0.60  -1.42 -0.81 -0.10  13.02 0.6306150 14.24 1.3382 

0.55 -0.62 1.18  -1.42 -0.77 -0.26  13.55 0.9461661 14.41 1.1987 

0.60 -0.73 1.77  -1.40 -0.75 -0.40  14.05 1.2144747 14.56 1.0589 

0.65 -0.84 2.38  -1.36 -0.73 -0.52  14.54 1.4408286 14.70 0.9210 

0.70 -0.93 3.00  -1.32 -0.72 -0.63  15.01 1.6298717 14.84 0.7862 

0.75 -1.01 3.64  -1.28 -0.71 -0.73  15.46 1.7850604 14.96 0.6554 

0.80 -1.08 4.30  -1.22 -0.71 -0.82  15.90 1.9086717 15.08 0.5294 

0.85 -1.13 4.96  -1.16 -0.72 -0.90  16.33 2.0018928 15.20 0.4090 

0.90 -1.17 5.65  -1.09 -0.72 -0.98  16.75 2.0648158 15.31 0.2949 

0.95 -1.19 6.36  -1.01 -0.74 -1.05  17.16 2.0962596 15.41 0.1883 

1.00 -1.19 7.09  -0.93 -0.75 -1.12  17.57 2.0933746 15.51 0.0903 
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Fig. 4 - Pareto frontier of MSE(FA)1(T) and MSE(FA)2(KP). 

 

 

Fig. 5 - Observed values of μ(T) and μ(Kp) from the NBI (MSE-FA) Pareto frontier. 

 

Table 8 presents the results relative to the procedure established at the Step 5. Firstly, 

the Mahalanobis distance between the frontier vectors and their individual targets are 

calculated. The targets used were μ(T) for T* = 17.505 and μ(Kp) for Kp* = 6.328; MD was 

determined using the variance-covariance matrix S of each solution.  

Secondly, 95% confidence ellipses are formed for each Pareto solution and are plotted 

considering the mean vector as their respective centroids (Fig. 6). Note in this part that all 

ellipses are based on the ˆnΣ  variance-covariance matrix, consequently their eigenvalues and 

eigenvectors are repeated. The center of each ellipse are the pairs resulting from the μ(T) and 

μ(Kp) frontier. 
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Table 8 - Results of Pareto frontier for MSE(FA)1 (T) and MSE(FA)2 (Kp). 

w1  
FA4  

µ(Kp) 

FA2 

(σ²(Kp)) 

FA3 

(σ² (T)) 

FA1 

(µ(T)) 
 MD V µM µV 

Fuzzy 

(µ
T
) 

0.00  -1.04 -1.10 0.11 -0.01  10,419.5 0.00248 0.9083 1.00 0.922 

0.05  -1.02 -1.02 -0.04 -0.10  21,983.4 0.00125 0.8064 1.00 0.835 

0.10  -1.01 -0.95 -0.17 -0.22  8,565.2 0.00336 0.9246 1.00 0.936 

0.15  -1.02 -0.89 -0.28 -0.35  9,851.8 0.00301 0.9133 1.00 0.926 

0.20  -1.03 -0.83 -0.37 -0.50  17,823.6 0.00171 0.8431 1.00 0.867 

0.25  -1.03 -0.77 -0.43 -0.67  91,566.6 0.00034 0.1932 1.00 0.314 

0.30  -1.04 -0.72 -0.48 -0.87  31,607.5 0.00104 0.7216 1.00 0.763 

0.35  -1.02 -0.66 -0.49 -1.13  22,688.6 0.00156 0.8002 1.00 0.830 

0.40  -0.95 -0.60 -0.43 -1.50  113,488.3 0.00036 0.0000 1.00 0.150 

0.45  -0.76 -0.36 -0.43 -1.76  22.6 2.46341 0.9999 0.46 0.918 

0.50  -0.58 -0.07 -0.57 -1.80  17.1 3.61246 1.0000 0.20 0.880 

0.55  -0.41 0.18 -0.70 -1.81  15.5 4.18781 1.0000 0.08 0.861 

0.60  -0.24 0.40 -0.81 -1.82  14.9 4.45941 1.0000 0.02 0.852 

0.65  -0.07 0.60 -0.92 -1.82  14.7 4.52992 1.0000 0.00 0.850 

0.70  0.09 0.77 -1.01 -1.81  14.8 4.45143 1.0000 0.02 0.853 

0.75  0.25 0.91 -1.10 -1.80  15.0 4.25345 1.0000 0.06 0.859 

0.80  0.40 1.03 -1.18 -1.78  15.4 3.95292 1.0000 0.13 0.869 

0.85  0.55 1.13 -1.24 -1.76  16.1 3.55805 1.0000 0.21 0.882 

0.90  0.70 1.21 -1.29 -1.74  17.0 3.06848 1.0000 0.32 0.898 

0.95  0.85 1.27 -1.33 -1.72  18.4 2.47030 1.0000 0.45 0.918 

1.00  1.00 1.30 -1.36 -1.68  21.5 1.70931 0.9999 0.62 0.943 

 

 

 

Fig. 6 - Confidence Ellipse for Pareto frontier of MSE1(T) and MSE2(KP). 
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Complementing the routine of Step 5, the volume of each ellipse is calculated using p 

= 2 and n = 7. In order to obtain 95% confidence ellipses (α=0.05), Eq. (26) is applied to two 

responses (T and Kp) m = 2, which has a CCD design with 18 observations (n) and response 

models have 9 coefficients each (r), except for the constant term, as in Eq. (26).  

 

      
1MWLS

2,5

p MWLS

ˆ(T) 14.236 0 0.937 0.351 cos2
 0.05
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   

   
p p

T T

K K

12.634 4.268
ˆ 

4.268 2.866

 
   

    
  

 

T K T Kp p

T K T Kp p

T
T

res ×res res ×res

T T

res ×res res ×res
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nΣ

Cov Cov res res

 
(27) 

 

Note that the eigenvalues and eigenvectors used are derived from variance-covariance 

matrix ˆnΣ , which consists of the relationship between regression residuals of T and Kp). The 

variance and covariance associated with each point are represented by the ellipse formed, 

which expresses the uncertainty of that solution found. 

In Step 6, the membership functions for MD and confidence ellipses volume are 

calculated. The corresponding values of utopia (1) and nadir (0) are respectively: 14.7 and 

113,488.3 for µM, 0.00034 and 4.530 for µV. Subsequently, with weight of 85/15 between the 

membership functions, the best value for the Fuzzy decision maker is 0.943 (higher).  

 

Fig. 7 - Non-Overlapping Confidence Ellipses in Pareto frontier 
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Therefore, this solution found is point 21 (w=1.0), with cutting speed (V) = 220.4 

m/min, Feed rate (f) =0.209 mm/rev and Depth of cut (d) = 0,340 mm. This configuration will 

promote an expect tool life μ(T) = 15.51 min and a process cost about μ(Kp) = 17.57 

US$/piece. 

Finally, after removing the overlapping ellipses, it is obtained the filtered Pareto 

frontier shown in the Fig. 7. Therefore, this procedure reduces from 21 to 13, the number of 

optimal scenarios in practice. 

The results achieved were better than those achieved by [4], which were: Multivariate 

optimization Kp = 7.284 US$/piece and T = 5.637 min; Multiple Optimization Kp = 7.410 

US$/piece and T = 6.000 min. In both cases, the solution found has a worse relationship 

between the cost per part (Kp) and the tool life (T). 

 

5.2. Multiobjective optimization of AISI H13 hardened steel turning. 

In a similar process of manufacturing hardened steel turning, the same variables are 

modeled to demonstrate the viability of the proposed method. Although the CCD has the same 

three input variables (V, f, d), only 2 of the 8 process output responses, tool life (T) and total 

cost (Kp) are selected for this example. Further information about process data can be found in 

[5]. 

The CCD characteristics are: 3 factors, 1 replicate, 19 runs, being 8 cube points, 5 

center points in cube, 6 axial points, 0 center points in axial and the distance of each axial 

point α = 1.68179. Table 9 represents the DOE of this second case.  

The correlation measured between variables T and Kp presents a Pearson coefficient 

equal to 0.758 (p-value = 0.000). Therefore, it is statistically significant, which is justified for 

the continuation of Step 2.Also analogous to the first numerical example, PCFA is performed 

for T, Kp, 2( )T  and 2 ( )pK , extracting four factors using principal component and 

Equimax rotation (Table 10). 

From Table 10 it is possible to verify that FA4 replaces μ(T) and presents a negative 

correlation with this variable; therefore, the minimization of FA4 leads to the maximization of 

tool life; FA3 is positively correlated with σ
2
 (T), then its minimization reduces the variance 

of tool life. FA1 and FA2 are positively correlated with μ(Kp) and σ
2
 (Kp), respectively; both 

minimization reduces the process costs and its respective variances. 
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Table 9 - Cutting parameters and responses for the CCD 2nd case 

Runs V f d T Kp 
2( )T  2 ( )pK  

1 100.00 0.100 0.150 59.50 2.99 33.4 1.008 

2 225.00 0.100 0.150 35.50 1.87 4.7 1.012 

3 100.00 0.225 0.150 50.50 2.60 1.4 1.003 

4 225.00 0.225 0.150 31.00 1.65 16157.5 1.022 

5 100.00 0.100 0.330 60.00 3.97 2535.5 1.034 

6 225.00 0.100 0.330 29.50 2.31 1.5 1.001 

7 100.00 0.225 0.330 50.50 3.33 5.5 1.008 

8 225.00 0.225 0.330 29.50 1.41 317.3 1.001 

9 57.39 0.163 0.240 59.00 4.20 309.2 1.018 

10 267.61 0.163 0.240 28.00 1.48 2970.2 1.005 

11 162.50 0.057 0.240 38.00 3.44 27101.7 1.044 

12 162.50 0.268 0.240 40.00 1.94 578672.3 1.020 

13 162.50 0.163 0.089 49.25 1.81 1.1 1.001 

14 162.50 0.163 0.391 48.00 2.56 1.1 1.000 

15 162.50 0.163 0.240 44.50 2.57 1.3 1.001 

16 162.50 0.163 0.240 44.00 2.54 1.3 1.001 

17 162.50 0.163 0.240 45.00 2.61 1.3 1.001 

18 162.50 0.163 0.240 45.50 2.53 1.3 1.001 

19 162.50 0.163 0.240 44.50 2.50 1.3 1.001 

Source: Adapted from Campos [27] 

 

Table 10 - Sorted Rotated Factor Loadings for 2nd case. 

 

  Loadings   

Variable FA1 FA2 FA3 FA4 

μ(T) 0.433 -0.121 -0.125 -0.884 

μ(Kp) 0.915 -0.034 -0.031 -0.400 

σ
2
 (T) -0.039 0.652 0.744 0.140 

σ
2
 (Kp) -0.053 0.756 0.640 0.125 

Variance 1.0302 1.0129 0.9798 0.9771 

% Var 0.258 0.253 0.245 0.244 
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Table 11 - Full quadratic models for each response 2nd case 

Term T Kp σ
2
 Kp σ

2 
T FA1 μ(Kp) FA2 σ² (Kp) FA3 σ² (T) FA4 μ(T) 

Constant 44.720 2.552 0.001 0.239 0.030 -1.204 -0.524 0.141 

V -10.774 -0.749 0.674 1.104 -0.604 -0.046 0.130 0.948 

f -1.438 -0.342 0.793 1.081 -0.515 0.191 0.123 -0.125 

d -0.666 0.232 0.669 1.073 0.433 0.096 0.187 0.235 

V 
2
 -0.509 0.090 2.004 3.261 0.144 0.151 0.761 0.008 

f 
2
 -2.100 0.037 3.004 3.951 0.169 1.048 0.137 0.151 

d 
2
 1.303 -0.141 0.757 0.725 -0.344 0.476 -0.170 -0.354 

V*f 1.750 -0.011 1.538 2.804 -0.173 -0.170 0.975 -0.387 

V*d -1.000 -0.189 0.365 0.594 -0.278 -0.002 0.157 -0.046 

f*d 0.500 -0.116 0.914 1.210 -0.234 0.290 0.106 -0.235 

R 
2
 (adj.) 92.42 96.74 99.87 99.90 94.22 100.00 99.39 95.55 

 

Table 11 shows the full quadratic models for original responses and respective 

equimax rotated factor scores. All models present suitable values for R
2
 adj. Proceeding to 

Step 3, GRG algorithm are used for calculate the targets for the MSE’s functions, nonlinear 

constraint T 2.828x x  (CCD axial distance (ρ) = 1.68179 for k = 3). The result found is MSE1 

(T) in 
( ) 4FAT


= -1.964 and to MSE2 (Kp) in 
( )1FAT


= -1.689.  

 

 

 
Fig. 8 - Pareto frontier of MSE1(T) and MSE2(KP) – NBI (MSE-FA) 2nd case 
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In the Step 4, the anchor points are defined as MSE1 (T) = [-0.997, 3.175] and MSE2 

(Kp) = [-0.020, -0.339]. NBI method (using GRG) is applied to solve MOP in the MSE of 

rotated factor scores, forming the Pareto frontier for MSE1(T) and MSE2(Kp), as in Fig. 8. 

The sequence of mean vectors obtained during the optimization of NBI-RFMSE is plotted in 

Fig. 9. 

Fig. 9 - Observed values of μ(T) and μ(Kp) from the NBI (MSE-FA) Pareto frontier 2nd case. 

 

After plotting all the confidence ellipses (Fig. 10), it is possible to analyze and remove 

those Pareto points that are overlapping. Of 21 solutions, only 9 remain, as seen in Fig. 11. 

Then, the confidence ellipses volume and MD are calculated with p = 2 and n = 9, using each 

matrix S.  

 

                  



36 

 

 

Fig. 10- Confidence Ellipse for Pareto frontier of MSE1(T) and MSE2(KP) 2nd case 

 

 
Fig. 11 - Non-overlapping Confidence Ellipses in Pareto frontier 2nd case 

 

Fuzzy decision maker is calculated producing membership functions for MD and V 

respectively equals to 19.95 and 50.07 for µM, 0.87 and 4.83 for µV. Given these data, the best 

overall performance found by decision maker Fuzzy is µ
T 

= 0.811, relative to the optimum 

solution point 18 (w1= 0,85), which corresponds to the process settings of Cutting Speed (V) = 

178.9 m/min, Feed (f) =0.157 mm/rev and Depth of cut (d) = 0,383 mm. In this way, the 
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respective response values are μ(T) = 51.18 min for the mixed ceramic tool life and μ(Kp) = 

1.94 US$/piece for the process cost.  

 

Table 12 - Comparisons among several multi-objective methods 

MOP Method T Distance Kp Distance 

Proposed Method 51.18 11.24 1.94 0.61 

NBI-MMSE* 50.01 12.41 3.29 1.97 

NBI* 37.34 25.08 2.34 1.02 

WSUM-MMSE* 49.64 12.78 3.26 1.94 

MCG-MMSE* 48.16 14.26 2.63 1.31 

AHL-MMSE* 50.48 11.94 3.33 2.01 

Target 62.43  1.32  

 

As a matter of comparison, the multiobjective optimization of this second case study 

was repeated with several different algorithms available: (a) the NBI-MMSE method like 

described in Eq. (7), (b) the traditional NBI in four dimensions (NBI*), (c) the method of 

weighted sums with MMSE functions (WSUM-MMSE*), (d) the Global criterion method 

(MCG-MMSE*) and the Arc homotopic length (AHL-MMSE*), both with multivariate mean 

square error function of Eq. (7). These results are summarized in Table 12.  

As can be noticed, NBI-RFMSE method outperformed all other strategies in this case 

which suggests that it may be safety used in the optimization of similar manufacturing 

process.  

5. Conclusions 

 

This paper has presented a multi-objective optimization algorithm that combined the 

characteristics of the Normal Boundary Intersection method with response surface models of 

equimax rotated factor scores. This hybrid NBI-RFMSE approach allowed the definition of a 

MSE function using the uncorrelated functions traced for means and variances for each 

original response of interest. These new objective functions were then optimized using 

Normal Boundary Intersection method and generated an equispaced Pareto frontier. For each 

point of this frontier, were established a 95% confidence ellipse based on its respective 

variances, covariance and expected value. Solutions with overlapped ellipses were removed 

from the frontier and afterward, they were assessed in terms of their volume (precision) and 
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accuracy, using a Fuzzy decision-maker index as a matter of balance the both criteria and the 

decision maker´s preference.  

The use of equimax rotated factor scores have presented some advantages over principal 

components mainly when compared with NBI-MMSE approach: the first one was the ability 

to fully separate the objective functions – characteristic that was not be achieve with PCA. 

From an optimization perspective, such separation allows the influence of the weights to be 

better transmitted to the objective functions. The second advantage is related to the capacity 

that the rotation method has to undid the conflict between the sense of optimization of the 

original variable and the response surface model of the factor scores. Equimax method has 

also presented the advantage to create decomposed functions with the same degree of 

explanation of total variance observed in the response data. This feature, that was not 

observed in PCA scores, allowed the definition of functions with the same degree of 

importance before the weighting process promoted by the interactions of the NBI algorithm. 

The use of 95% confidence ellipses proved to be a suitable approach in filtering the 

initial Pareto optimal solutions, reducing the number of the alternatives for posterior 

assessment. As the most innovative proposal of this work, this step brought the concept of 

statistical independence to the context of optimization, discussions which are so rare in the 

literature.  

Two numerical examples were developed to test the approach. In the case of the multi-

objective optimization of the turning process of the AISI 52100 hardened steel carried out 

with CC6050 mixed ceramic inserts the minimal process cost, the maximal tool life, and 

minimal variance for both responses were achieved with a cutting speed equal to 220.4 

m/min, feed rate  equal to 0.209 mm/rev and depth of cut equal to 0,340 mm. This 

configuration will promote an expect tool life of 15.51 with a variance of 0.09 and a process 

cost about 17.57 US$/piece, with a variance of 2.09. For AISI H13 hardened steel with CC 

670 mixed ceramic tools, similar results were achieved with a cutting speed  equal to 178.9 

m/min, feed rate  equal to 0.157 mm/rev and depth of cut equal to 0.383 mm, setup 

responsible for a tool life of 51.18 min, with a variance  of 0.44 and a process cost around 

1.94 US$/piece, with a variance  of 0.89. It is worth mentioning that the great difference 

between T and Kp in the numerical cases is due to differences in the type of inserts and in the 

cost of the steels used. 

The quality of these practical results motivates us to suggest the method may be 

extended to applications on multi-objective optimization problems of many others 

manufacturing processes. 
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